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Influence of Hydrophobicity on Anion Selectivity
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5. Simulations of Water-Alkane Interfaces

7. Exploring a Model Nanopore

1. Introduction
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8. Summary & Conclusions

e The dynamic behaviour of water within
nanopores and at interfaces emphasises the
need for accurate models.

 Some water models are developed to describe
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/ / / particular physical properties better than
others.
e Polarisable water models account for variation
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were used for analysis.

i . ) =6 nm
e Simulation details — same as above.

The ECC method introduces some electronic
polarisability effects to the force field whilst
maintaining computational efficiency.

Hybrid
methods: ECC

Physical Accuracy & Computational Cost

Full polarisable
force fields

Non-polarisable
force fields

Fig 6. Model CNT Pore. A Schematic diagram of the model pore. B Simulation box with
model CNT embedded in a POPC bilayer and solvated with NaCl and water. C Top-down
view of pore.
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